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In this paper, the authors conduct a study of artificial magnetism and anticrossing interaction that arise in
photonic crystals and split-ring structures. The magnetic activity comes from localization of fields in photonic
crystals with large dielectric contrast as well as in split-ring structures with the defectlike resonance. Both
structures exhibit similar dispersion features near the resonance, whose effective permeability can be described
in terms of the Lorentz-type oscillators. In particular, strong magnetic response is accompanied with the
anticrossing interaction between the two fundamental frequency branches. This feature is characterized by a
simple dynamic model which incorporates the coupling between a free and a localized photon state and
illustrated with the transition of mode patterns where the fields mutually exchange their localization nature as
the wave number changes.
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I. INTRODUCTION

Artificial magnetism in an essentially nonmagnetic
medium is one of the most distinguished features in
metamaterials.1–3 This unusual property comes from the
resonance of fields inside the microstructures that compose
the medium and becomes significant when the free-space
wavelength is much larger than the microstructure size. Ar-
tificial magnetism is therefore quasistatic in nature, and
along with it usually comes a localized field distribution
within the microstructure. A very inhomogeneous field is re-
quired to produce a large magnetic activity,1 and an adverse
response is even possible once the frequency goes above the
intrinsic resonance.4,5 By regarding the structure as a homo-
geneous medium, the effective permeability can be negative
over a certain frequency range, which corresponds to the
forbidden gap in the dispersion diagram. This feature con-
sists with the localized nature of artificial magnetism; the
fields are largely confined within individual elements. Propa-
gation of the electromagnetic fields in the medium is thus
prohibited.

Metal rings were known to possess the diamagnetic prop-
erty due to the conducting current loop associated with the
ring geometry.6 As a gap is introduced to build the split-ring
configuration, the magnetic response will be enhanced due to
the resonance. This type of resonance is analogous to that in
the LC circuit, where the conduction currents are circulating
around the ring element and resulting in a significant mag-
netic moment. An equivalent circuit model was proposed to
depict the artificial magnetism and lead to an effective per-
meability under the long-wavelength assumption.1 In another
aspect, artificial magnetism occurs as well in photonic crys-
tals with large dielectric contrast.7 This is due to the concen-
tration of fields within the high dielectric region, which pro-
duces intensive polarization currents circulating around the
dielectric element. A theory of mesoscopic magnetism based
on the multiscale expansions was appealed to describe the
effective permeability in terms of a sum of Lorentz-type
oscillators.8 The respective oscillations are identified as the

waveguide modes associated with the dielectric geometry. A
negative value of the effective permeability is also possible
when the frequency exceeds the embedded resonance. This
feature confirms that a periodic structure mimics a
metamaterial.9 An analysis based on the complex band struc-
ture was recently presented for the interpretation of artificial
magnetism for periodic metal-dielectric-metal layered
structures.10 The use of complex band structure establishes
additional criteria for the validity of effective-medium de-
scription for metamaterials, where the attenuation of electro-
magnetic waves has been considered.

In this paper, the author investigates the important fea-
tures of artificial magnetism and its related anticrossing be-
havior, with emphasis on the correspondences between pho-
tonic crystals and split-ring structures. The theory of
mesoscopic magnetism in photonic crystals8 is revisited and
employed in split-ring structures with a slight modification.
Two similar features related to artificial magnetism will be
identified in both types of structures. First, the fields are
strongly localized within individual elements with rather
weak interactions between neighboring cells. Near the reso-
nance, the magnetic fields are greatly enhanced inside the
dielectrics or split rings, while outside the fields are substan-
tially reduced. The split-ring structure shows a more efficient
mechanism for concentration of fields and a larger and near-
optimal resonance strength, where the intrinsic LC resonance
corresponds to the lowest-order Lorentz-type oscillator. Sec-
ond, in the frequency range where strong artificial magne-
tism occurs, the two fundamental branches exhibit an anti-
crossing interaction. There exists the like symmetry in the
eigenmodes on the two branches, causing them to repel each
other. The anticrossing behavior can be characterized by a
simple dynamic model which incorporates the coupling co-
efficient between a free photon state and a localized photon
state as the interaction strength. This feature is further illus-
trated with the transition of modes on the respective
branches, where the fields mutually exchanged their localiza-
tion nature as the wave number changes.
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II. BASIC EQUATIONS

A. Dispersion characteristics

Dispersion is a property of wave that interacts with a me-
dium. Important features are either manifest or implied in the
dispersion characteristics. For periodic structures made of
identical elements, dispersion features are embedded in the
eigensystem based on the electromagnetic wave equation and
the Bloch condition. The magnetic response for a two-
dimensional array of dielectric or split-ring columns is de-
scribed by the transverse electric �TE� modes, where the E
field lies completely in the lattice plane as

− ��1

�
� H� = ��

c
�2

H , �1�

where H is the magnetic field along the column axis. For a
periodic lattice with infinite extent, it is sufficient to solve the
underlying problem in one unit cell, along with the Bloch
condition

H�r + ai� = eik·aiH�r� �2�

applying at the unit-cell boundary, where k is the Bloch
wave vector and ai �i=1,2� is the lattice translation vector.
The eigensystem �1� which considers the frequency as un-
known is to be solved by the inverse iteration method for
dielectric structures11,12 or the interface matching method for
metal structures.13–15 For pure dielectric structures, no spe-
cial treatment is needed at the interface between different
media, whereas it is indispensable for metal structures. By
matching the boundary condition at the interface, important
features pertaining to metals can be resolved in detail. This is
particularly true when the plasmonic property increases its
importance and the effect of skin depth on the dispersion
characteristics becomes significant.

B. Artificial magnetism

Artificial magnetism arises in a structure where the mag-
netic fields are sufficiently localized. This was realized in a
photonic crystal with large dielectric contrast.7 For TE polar-
ization, the H fields are largely confined in the high dielectric
regions and the polarization currents are circulating around
the dielectric element, giving rise to a significant magnetic
moment. Let �d be the dielectric constant of the cylinder and
the background material is assumed to be air. Based on the
theory of mesoscopic magnetism,8,16,17 the effective perme-
ability is expressed as a sum of Lorentz-type oscillators

�eff = 1 + f�
n

�n�2

�n
2 − �2 , �n =

��n,1�2

��n,�n��1,1�
, �3�

where f is the fraction of dielectric material, �n and �n are
the nth solution pair of the eigensystem −�2�=�d�� /c�2�,
defined at the interior of high dielectric region � with �
=0 on its boundary, and the inner product �f ,g��	�f�gd� is
an integral taken over the region �. In Eq. �3�, �n is consid-
ered the strength of nth-order resonance, and �n is the cor-
responding H field to the leading order. In fact, �n and �n
were identified as the frequency and mode structure, respec-

tively, of the TM0n waveguide mode for circular geometry in
particular. The first index 0 is the only choice that assures of
nonzero resonance strength �n, or equivalently, nonzero
magnetic-dipole moment. Accordingly, �n=x0nc /r
�d and
�n=J0�x0n� /r�, where x0n is the nth zero of J0�x� and � is the
radial coordinate with the origin at the cylinder center.18 It
follows that ��n ,1�=2	r2J1�x0n� /x0n, ��n ,�n�=	r2J1

2�x0n�,
�1,1�=	r2, and therefore �n=4 /x0n

2 .19 Near the lowest reso-
nance frequency �1, Eq. �3� is approximated as

�eff � 1 −
f�1�2

�2 − �1
2 , �4�

where the resonance strength �1=0.692 �x01�2.405� is a
constant. For other geometries, �1 is slightly different; for
example, �1=64 /	4�0.657 for square shape.

III. RESULTS AND DISCUSSION

A. Magnetism in photonic crystals

Figure 1�a� shows the dispersion diagram for a periodic
array of dielectric circular cylinders of radius r /a=0.2 and
dielectric constant �d=55. A typical dispersion pattern with
strong resonance is observed between the first two frequency
branches for TE polarization. The second branch goes to
higher frequencies as the wave vector magnitude increases.
This is in contrast to the case of weak resonance where the
second branch usually goes to lower frequencies �a typical
phenomenon of band folding�. In particular, the basic two TE
branches experience an anticrossing interaction with respect
to the light line �cf. the black �inclined� dashed line in Fig.
1�a� in the range 
−X. This phenomenon will occur when
the eigenmodes on the two adjacent branches possess the like
symmetry and the intersection of branches is avoided.20 The
like symmetry is manifest on the H field patterns of the
eigenmodes at the lower and upper band edges �the insets of
Fig. 1�a�, which belong to the first and second branches,
respectively. These patterns depict the localized nature asso-
ciated with magnetic resonance, where the H fields are
largely concentrated within individual dielectric cylinders
with rather weak interactions between neighboring cells.
This feature also reflects to the fact that a very inhomoge-
neous field distribution is required to produce a strong mag-
netic activity.1

The lowest Lorentz-type oscillator frequency is obtained
by solving the corresponding eigensystem, −�2�
=�d�� /c�2�, to give �1=0.254�2	c /a�. This frequency is
almost identical to that at the lower band edge �cf. the red
�horizontal� dashed line in Fig. 1�a�. Based on Eq. �4�, the
effective permeability �eff in terms of the Lorentz-type os-
cillator is plotted in Fig. 1�b�. At the oscillator resonance �1,
�eff diverges and the region of negative �eff coincides well
with the forbidden gap in the dispersion diagram. The field
pattern of �1 is shown in Fig. 1�c� and the corresponding
resonance strength is calculated to give �1=0.703 �cf. Eq.
�3�, which is close to the ideal value of 0.692 for circular
geometry. Note that �1 is also close to the TM01 waveguide
mode frequency for the same radius and dielectric constant
x01c /r
�d=0.258�2	c /a�. Near the resonance, the polariza-
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tion currents Jp��P /�t are circulating around the dielectric
column as shown in Fig. 1�d�, which give rise to a substantial
magnetic-dipole moment along the column axis.

B. Magnetism in split-ring structures

Similar dispersion characteristics and artificial magnetism
stated in Sec. III A occur in split-ring structures as well.
Figure 2�a� shows the dispersion diagram for a periodic array
of split-ring columns with the internal radius ri /a=0.2 being
the same as the cylinder radius of the photonic crystal in Fig.
1. The skin depth of the metal is assumed to be vanishingly
small. Both the ring thickness t /a=0.04 and the gap distance
d /a=0.04 are small enough in order to give a better corre-
spondence with the photonic structure. First, the dispersion

diagram displays a similar resonance pattern �at about the
same frequency range� as the photonic structure in Fig. 1.
The anticrossing interaction �with respect to the light line�
occurs between the first two TE branches and is realized by
the like symmetry of eigenmodes at the upper and lower
band edges �cf. the insets of Fig. 2�a�. A minor distinction is
that the second branch goes to relatively higher frequencies
�than those in the photonic crystal� at the symmetric points X
and M.

Compared to photonic crystals, the split-ring structure ex-
hibits a more efficient mechanism of magnetic resonance. As
shown in the insets of Fig. 2�a�, the H fields of the eigen-
modes at the two band edges are nearly constant inside the
split ring. This is in contrast with the outward decaying pat-
tern �Bessel function� for the dielectric structure �cf. the in-
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FIG. 1. �Color online� �a� Dispersion diagram for a periodic array of dielectric circular columns with radius r /a=0.2 and dielectric
constant �d=55. Shaded area corresponds to the forbidden gap. Black �inclined� dashed line stands for the light line and red �horizontal�
dashed line denotes the lowest Lorentz-type oscillator frequency �1. Insets show the eigenmodes at the upper and lower band edges. �b�
Effective permeability �eff based on Eq. �4�. �c� Field contours of the eigenfunction �1 in Eq. �3�. �d� Polarization current vectors Jp

associated with �1.
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FIG. 2. �Color online� �a� Dispersion diagram for a periodic array of circular split-ring columns with inner radius ri /a=0.2, ring thickness
t /a=0.04, and gap distance d /a=0.04. Insets show the eigenmodes at the upper and lower band edges. �b� Effective permeability �eff based
on Eq. �4�. �c� Field contours of the eigenfunction �1 in Eq. �3�. �d� Polarization current vectors Jp �in the ring� and displacement current
vectors Jd �in the gap� associated with �1.
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sets of Fig. 1�a�. Based on the theory of mesoscopic
magnetism,8 the internal fraction of split ring takes the place
of high dielectric region and Eq. �3� can be utilized to ex-
press the effective permeability with a slight modification to
the equation and boundary condition for �. The respective
eigensystem is modified as −�2�= �� /c�2�, defined over the
unit cell with � satisfying the radiation boundary condition at
the boundary.21 Accordingly, the lowest Lorentz-type oscilla-
tor frequency for the present configuration is solved to give
�1=0.258�2	c /a�. This frequency is sufficiently close to the
lower band edge �cf. the red �horizontal� dashed line in Fig.
2�a�, although there is a small discrepancy in between.
Based on Eq. �4�, the effective permeability �eff in terms of
the Lorentz-type oscillator is plotted in Fig. 2�b�, which has
a close resemblance to that for the photonic crystal �cf. Fig.
1�b�. The field pattern of eigenfunction �1 is plotted in Fig.
2�c�, and the corresponding resonance strength is calculated
to give �1=1.217. This value is substantially larger than that
in the photonic crystal ��1=0.703�, which confirms that the
resonance mechanism is more efficient and the split-ring
structures act like arrays of high-Q cavities. The region of
negative �eff basically coincides with the forbidden gap in
the dispersion diagram, though not as good as the case of
photonic crystal. Near the resonance, the polarization cur-
rents Jp are circulating around the ring element, as shown in
Fig. 2�d�. In the gap region, the displacement currents Jd
��0�E /�t fill the disconnected portion of polarization cur-
rents to build a close current loop. This produces a magnetic-
dipole moment similar to that in the photonic crystal �cf. Fig.
1�d�.

Anticipating an ideal condition where both the ring thick-
ness and gap distance are vanishingly small, �1 may ap-
proach a constant inside the split ring and exactly null out-
side, and therefore �1��1,1�2 / �1,1�2=1 �cf. Eq. �3�. This
result corresponds to the effective-medium theory based on
the equivalent circuit model �eff=1− f�2 / ��2−�0

2�,1 where
the intrinsic LC resonance frequency �0 plays the same role
of the lowest Lorentz-type oscillator frequency �1. For a real
split-ring configuration, �1 could be slightly deformed
around the ring gap, causing �1 to deviate from unity to a
certain extent.

C. Anticrossing interaction

Anticrossing interaction between the two fundamental
branches in the dispersion diagram appears as another distin-
guished feature of resonance associated with artificial mag-
netism. This phenomenon occurs when the mode structures
on two adjacent frequency branches possess the like symme-
try; the intersection of branches is thus avoided.22 In the
present study, the anticrossing behavior is manifest on the
photonic crystal with large dielectric contrast, as well as on
the split-ring structure with sufficient internal fraction.

To demonstrate the dependence of anticrossing behavior
on the dielectric contrast, Fig. 3�a� shows the frequency
branches for the photonic crystal with r /a=0.2 for various
�d. The frequency has been scaled with 2	c /r
�d �instead of
2	c /a� in order to identify the anticrossing phenomenon at
about the same range. In the present configuration, the anti-

crossing scheme arises when the dielectric contrast exceeds a
threshold value ��d�24�, at which the second branch ap-
pears as a flat band in the range 
−X. As the dielectric con-
trast is further increased, the anticrossing pattern becomes
more evident. Below the threshold, the second branch be-
haves as an ordinary optical branch in most periodic struc-
tures; that is, the branch goes downward as the wave vector
magnitude increases.

A similar feature appears in the split-ring structures for
various internal radius ri /a, as shown in Fig. 3�b�. Both the
ring thickness and gap distance are kept at small values.
Likewise, the frequency is scaled with 2	c /r �instead of
2	c /a� to identify the anticrossing behavior at about the
same range. The anticrossing scheme is more evident for
larger internal fractions. Below the threshold �ri /a�0.11�,
where the second branch becomes flattened, the anticrossing
behavior no longer exists. As in the case of photonic crystal,
the upper bound of the first branch as well as the lower
bound of the second is approximately located at the same
positions. The band gap opens as the anticrossing appears,
and artificial magnetism becomes a significant feature.

The anticrossing behavior has been studied for the optical
properties of metallodielectric photonic crystals.23 In con-
junction with the effective-medium description and group-
theory analysis, the hybridization of states in two bands
gives rise to an induced frequency gap. The anticrossing in-
teraction usually occurs between a heavy and a light photon
band;24 the former is referred to a strong localized photon
state and the latter to a nearly free photon state.25 In photonic
crystals, the localization feature can be achieved by increas-
ing the dielectric contrast, while the localization in split-ring
structures is attained by introducing a gap �into the ring� to
form a defectlike state.26 Both situations correspond to a
heavy photon state, along with it comes a dispersionless or
flattened band. Once there is a coupling between the two
states, the respective branches tend to repel each other.27 This
feature can be characterized by a simple dynamic model
analogous to that in the analysis of electronic energy bands
in solids28 and semiconductor alloys.29 Denoting by � the
coupling coefficient between a free photon state H0 �with
frequency ck� and a localized photon state H1 �with the low-
est Lorentz-type oscillator frequency �1�, one has
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FIG. 3. �Color online� Anticrossing phenomenon in �a� photonic
crystals with r /a=0.2 for various dielectric contrasts, and �b� split-
ring structures with t /a=0.01 and d /a=0.01 for various internal
radius ri.
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Ḧ0 + c2k2H0 = �H1, �5�

Ḧ1 + �1
2H1 = �H0. �6�

The above equations lead to the condition of nontrivial solu-
tion as

��2 − c2k2 �

� �2 − �1
2 � = 0, �7�

and the two solutions are given by

��
2 =

1

2
��1

2 + c2k2 � 
��1
2 − c2k2�2 + 4�2 . �8�

In this approximate model, the coupling constant � is a mea-
sure of the interaction strength. The repelling of the two
states �from the presumed crossing point� is characterized by
2�; the high-frequency state shifts by +�, while the low-
frequency state shifts by −�. In addition, as the photon states

gain momentum �by increasing k�, their characteristics are
mutually exchanged: �− changing from ck to �1, while �+
changing from �1 to ck.

The change of frequency is accompanied with the transi-
tion of mode pattern. For illustration, the transition of mode
patterns on the two interaction branches is plotted in Fig. 4
for the same photonic crystal in Fig. 1. As the wave number
increases, the modes on the upper branch �Figs. 4�a�–4�c�
gradually lose their localized nature; the fields are no longer
concentrated within the dielectric region only. On the other
hand, the modes on the lower branch �Figs. 4�e� and 4�f�
change in the opposite manner; the fields gain localization
with increasing the wave number. Similar mode transitions
for the split-ring structure are illustrated in Fig. 5. The trend
of losing or gaining localization on the respective branch is
alike, and the repelling between the branches are more evi-
dent, which is attributable to a larger interaction strength �or
the coupling constant �� for the split-ring structure. This
consists with the nearly optimal resonance strength �1 asso-
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FIG. 4. �Color online� Transition of mode patterns for the photonic crystal in Fig. 1 on the upper branch with �a� kxa /2	=0.1, �b� 0.25,
and �c� 0.4 and on the lower branch with �d� kxa /2	=0.1, �e� 0.25, and �f� 0.4. The color intensity denotes the magnitude of magnetic field.
Respective locations of the modes �a�–�f� are marked in the right plot.
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FIG. 5. �Color online� Transition of mode patterns for the split-ring structure in Fig. 2 on the upper branch with �a� kxa /2	=0.1, �b� 0.25,
and �c� 0.4 and on the lower branch with �d� kxa /2	=0.1, �e� 0.25, and �f� 0.4. The color intensity denotes the magnitude of magnetic field.
Respective locations of the modes �a�–�f� are marked in the right plot.
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ciated with the split-ring element. A similar transition behav-
ior is also observed between the defectlike and corelike
modes in the fiber structure.30

Finally, the effect of skin depth on artificial magnetism
and anticrossing interaction for the split-ring structure is
shown in Fig. 6 by applying the free-electron model �=1
−�p

2 /�2 for the dielectric function, where �p is the bulk
plasma frequency of the metal. The skin depth is defined as
p�2	c /�p. For relatively small skin depths �p /a�1� in
Fig. 6�a�, the dispersion features slightly deviate from the
case of p�0; the frequency branches tend to level down as
p /a increases. The anticrossing interaction and resonance
band gap due to artificial magnetism is still present. For rela-
tively large skin depths �p /a�1� in Fig. 6�b�, the dispersion
characteristics alter in two aspects. First, the branches drop
to much lower frequencies and it is more adequate to scale
the frequency with 2	c /p �instead of 2	c /a�. This feature
amounts to the saturation of magnetic resonance with respect
to the structure size and is attributed to the kinetic inductance
caused by the increasing importance of kinetic energy of free
electrons.31,32 Second, the resonance region gradually shrinks
to a rather small band width and the anticrossing behavior
becomes less significant. As the skin depth is further in-
creased, the frequency branches apparently bend toward kx

=0; the lower branch grows into a flat band at a smaller wave
number and the higher branch rises abruptly to a much
higher frequency.

IV. CONCLUDING REMARKS

In conclusion, artificial magnetism and anticrossing inter-
action in photonic crystals and split-ring structures were in-
vestigated. Near the resonance, the two types of structures
exhibit similar dispersion features, along with highly local-
ized eigenmode patterns. The correspondence is more evi-
dent when the dielectric contrast of the photonic crystal be-
comes larger and both the ring thickness and gap distance of
the split-ring structure become smaller. The effective perme-
abilities for both structures are well described in terms of the
Lorentz-type oscillators based on the theory of mesoscopic
magnetism.8 Compared to photonic crystals, the split-ring
structures show a more efficient and nearly optimal reso-
nance mechanism and act like arrays of high-Q cavities. This
situation corresponds with the equivalent circuit model,1 in
which the intrinsic LC resonance serves as the lowest
Lorentz-type oscillator. Strong magnetic response is also ac-
companied with the anticrossing interaction between the two
fundamental frequency branches, which was manifest on the
like symmetry of eigenmodes at the two band edges. The
respective frequency branches repel each other, showing the
coupling between a free photon state and a localized photon
state. This anticrossing behavior was characterized by a
simple dynamic model which incorporates the coupling co-
efficient between the two states as the interaction strength
and illustrated with the transition of mode patterns where the
fields mutually exchange their localization nature as the
wave number changes.
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